wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation (xy)dy(x+y)dx=0

Open in App
Solution

(xy)dy(x+y)dx=0
(x+y)dx=(xy)dy
dydx=x+yxy
dydx=1+yx1yx
Let, yx=V,y=vx
dydx=v+x.dvdx
v+x.dvdx=1+v1v
x.dvdx=1+v1vv=1+vv+v21v=1+v21v
1v1+v2dv=1x.dx
Integrating both side
11+v2dv122v1+v2dv=1xdx
tan1v12log|1+v2|=logx+logc
tan1yx12log|1+y2x2|=logx+logc
tan1yx=log(x.c)+12log|1+y2x2|
tan1yx=log(x.c.(1+y2x2)12)
etanyx=x.c.(x2+y2)12x=(x62+y2)12.c
etanyx=(x2+y2)12.c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon