wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation (x+y)dy+(xy)dx=0.

Open in App
Solution

Consider (x+y)dy+(xy)dx=0

dydx=xyx+y...(1)

It is a homogeneous function of degree 0.

Put y=vx

Differentiating with respect to x we get

dydx=xdvdx+v

Thus (1) becomes,

xdvdx+v=xvxx+vx

xdvdx+v=x(1v)x(1+v)

xdvdx+v=1v1+v

xdvdx=v11+vv

xdvdx=v1vv21+v

xdvdx=(1+v2)1+v

1+v1+v2dv=dxx

Integrating both sides we get

1+v1+v2dv=dxx

11+v2dv+v1+v2dv=dxx

tan1(v)+v1+v2dv=logx+logc

Put v2+1=t2vdv=dtvdv=dt2

tan1(v)+12tdt=logx+logc

tan1(v)+12logt=logx+logc

Substitute back t=v2+1

tan1(v)+12log(v2+1)=logx+logc

Substitute back v=yx

tan1(yx)+12log(y2x2+1)=logx+logc

tan1(yx)+12log(y2+x2x2)=logx+logc

tan1(yx)+log(y2+x2x2)=logx+logc

tan1(yx)+log(y2+x2x)=logx+logc

tan1(yx)+log(x2+y2)logx=logx+logc

tan1(yx)+log(x2+y2)=logc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon