We have,
ylogydxdy+x−logy=0
Now,
dxdy+xylogy−logyylogy=0
dxdy+xylogy=1y
On Comparing that,
dxdy+Px=Q
P=1ylogy,Q=1y
I.F.
I.F.=e∫Pdy=e∫1ylogydy=elog(logy)=logy
Then,
x×I.F.=∫Q×I.F.+C
xlogy=∫1y×logydy+C
xlogy=(logy)22+C
Hence, this is the
answer.