1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Variable Separable Method
Solve the dif...
Question
Solve the differential equation
y
−
x
d
y
d
x
=
a
(
y
2
+
d
y
d
x
)
.
Open in App
Solution
y
−
x
d
y
d
x
=
a
(
y
2
+
d
y
d
x
)
given
d
y
d
x
(
a
+
x
)
=
y
−
a
y
2
d
y
y
−
a
y
2
=
d
x
a
+
x
Integrating both sides and variable separation
∫
d
y
y
(
1
−
a
y
)
=
∫
d
x
a
+
x
∫
∣
∣
∣
1
y
+
a
1
−
a
y
∣
∣
∣
d
y
=
log
|
x
+
a
|
+
c
log
|
y
|
−
log
|
1
−
a
y
|
=
log
|
x
+
a
|
+
log
b
(let
c
=
log
b
b
is constant
log
∣
∣
∣
y
1
−
a
y
∣
∣
∣
=
log
|
(
x
+
a
)
b
|
⇒
y
=
b
(
x
+
a
)
(
1
−
a
y
)
⇒
y
[
1
+
a
b
(
x
+
a
)
]
=
b
(
x
+
a
)
y
=
b
(
x
+
a
)
1
+
a
b
(
x
+
a
)
general solution
Suggest Corrections
0
Similar questions
Q.
Solve the differential equation :
(
y
−
x
d
y
d
x
−
a
(
y
2
+
d
y
d
x
)
) =0
Q.
The solution of the differential equation
y
−
x
d
y
d
x
=
a
(
y
2
+
d
y
d
x
)
is
Q.
Solve:
y
−
x
d
y
d
x
=
a
(
y
2
+
d
y
d
x
)
Q.
The solution of the differential equation
is
[AISSE 1989, 90]