wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the differential equation : y+xdydx=xydydx

Open in App
Solution

y+xdydx=xydydx
(x+y)dydx=xy
dydx=xyx+y ………..(1)
Let y=vx
on differentiating we get dydx=v+xdvdx
Now from equation (1) we get
v+xdvdx=xvxx+vx=1v1+v
v1v1+v=xdvdx
v+v21+v
v2+2v1=xdvdx
1v2+2v1dv=1xdx
On integrating both side we get
1(V+1)2(2)2dv=1xdx
122lnv+12v+1+2=lnx+c
122ln∣ ∣y+x(12)y+x(1+2)∣ ∣=lnx+c.

1182928_1356232_ans_2a9f32cc71e04b9ea307842df34b721f.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon