The correct option is D yex2/2(c−cosx)+1=0 or yex2/2(xlogx−x+c)+1=0.
dydx+yx=y2.ex22.sinx⇒1y2dydx+yxy2=ex22sinx
⇒1y2dydx+1yx=ex22sinx
Put −1y=v⇒1y2dy=dv
∴dvdx−vx=ex22sinx ...(1)
Here, P=−x⇒∫Pdx=−∫xdx=−x22
∴I.F.=e−x22
Multiplying 1 by I.F., we get
e−x22dvdx−ve−x22=sinx
Integrating both sides we get,
e−x22v=cosx+C ⇒v=ex22(cosx+C)⇒yex22(cosx+C)=−1
Now similarly for
dydx=y2ex22logx
⇒−1y.e−x22=xlogx−x+C⇒yex22(xlogx−x+C)+1=0