Solve the equation 2|x+1|−2x=|2x−1|+1 xϵ(a,∞)∪(−b) Find a+b
Open in App
Solution
Find critical points: x+1=0,2x−1=0∴x=−1,x=0 consider following cases: x<-1: 2−(x+1)−2x=(2x−1)+1⇒2−(x+1)=2∴−(x+1)=1∴x=−2............(1) −1≤x<0: 2x+1−2x=(2x−1)+1⇒2x+1=2∴x+1=1∴x=0x≠0(∵−1≤x<0) x≥0: 2x+1−2x=2x−1+1⇒2x+1=2.2x⇒2x+1=2x+1 which is true for x≥0 Now combining all cases, we have the final solution as: xϵ(0,∞)∪(−2) Ans: 2