Solve the equation 2sinx+cosy=2 for the values of x and y.
A
y=2n1π±cos−1(2(1−t)) and x=n2π+(−1)n2sin−1(t)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=2n1π±sin−1(1−t) and x=n2π+(−1)n2cos−1(t)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=n1π±cos−1(1−t) and x=2n2π+(−1)n2sin−1(t)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=2n1π±cos−1(2(1−t)) and x=n2π+(−1)n2sin−1(t) 2sinx+cosy=2⇒2sinx=2−cosy ⇒sinx=1−12cosy ⇒x=nπ+(−1)nsin−1(1−12cosy) 2sinx+cosy=2⇒cosy=2−2sinx⇒y=2mπ±cos−1(2−2sinx) Where t=1−12cosy ∴2(1−t)=2−2sinx Hence y=2n1π±cos−1(2(1−t))x=n2π+(−1)n2sin−1(t)