3sin−1(2x1+x2)−4cos−1(1−x21+x2)+2tan−1(2x1−x2)=π3
Put x=tanθ then, θ=tan−1x
3sin−1(2tanθ1+tan2θ)−4cos−1(1−tan2θ1+tan2θ)+2tan−1(2tanθ1−tan2θ)=π3
3sin−1sin2θ−4cos−1cos2θ+2tan−1tan2θ=π3
6θ−8θ+4θ=π3
2θ=π3
θ=π3
Put θ=tan−1x
tan−1x=π6
x=tanπ6
x=1√3
Hence, this is the answer.