Given equation is, - 4 - 1 + 2 + . . . . .+ x = 437 . . . .. (i)
Here, - 4 - 1 + 2 + . . . . .+ x forms an AP with first term= -4, common difference = 3,
an = l = x
∵ nth term of an AP, an=l=a+(n−1)d
⇒ x=−4+(n−1)3
⇒ x+43=n−1⇒n=x+73
∴ Sum of an AP, Sn=n2[2a+(n−1)d]
Sn=x+72×3[2(−4)+(x+43).3]
=x+72×3(−8+x+4)=(x+7)(x−4)2×3
From Eq.(i),
Sn = 437
⇒ (x+7)(x−4)2×3=437
⇒ x2+7x−4x−28=874×3
⇒ x2+3x−2650=0
x=−3±√(3)2−4(−2650)2
[by quadratic formula]
=−3±√9+106002
=−3±√106092=−3±1032=1002,−1062
=50,−53
Here, x cannot be negative i.e., x≠−53
Also, for x = - 53, n will be negative which is not possible.
Hence, the required value of x is 50.