Given the series [−4+(−1)+2+⋅⋅⋅⋅x=437] in A.P.
Then,
a=−4
d=−1−(−4)=3
Sn=437
Then, using sum formula A.P.
Sn=n2[2a+(n−1)d]
⇒437=n2[2(−4)+(n−1)3]
⇒874=n[−8+3n−3]
⇒874=3n2−11n
⇒3n2−11n=874
⇒3n2−11n−874=0
⇒3n2−(57−46)n−874=0
⇒3n2−57n−46n−874=0
⇒3n(n−19)−46(n−19)=0
⇒(n−19)(3n−19)=0
⇒n−19=0,3n−19=0
⇒n=19,n=193
Hence, n=19
So,
x=a+(n−1)d
x=−4+(19−1)3
x=−4+54
x=50
Hence, this is the answer.