wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation : 4sin2x+2cos2x + 41sin2x+2sin2x = 65

Open in App
Solution

4sin2x+2cos2x+41sin2x+2sin2x=65
sin2x=1cos2x
2sin2x=22cos2x
4sin2x+2cos2x+43(sin2x+2cos2x)=65
4sin2x+2cos2x+434sin2x+2cos2x=65
using 4sin2x+2cos2x=t
t+64t=65
t2=64=65t
t265t+64=0
(t1)(t64)=0
t=1,64
at t=1 at t=64
4sin2x+2cos2x=1 4sin2x+2cos2x=43
sin2x+2cos2x=0 sin2x+1+cos2x=3
sin2x+1+cos2x=0 sin2x+cos2x=2
cos(2x+π4)=cos3π4 but maximum value of sin2x+cos2x is 2
2x+π4=2xπ±3π4 No solution for x
x=nπ±3π8π6 Only solution for x is x=nπ±3π8π8.

1181177_1207701_ans_dee7dbab710d44d4aebf48cabede81e8.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon