wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation : 512+512+log5(sinx)=1512+log15cosx

Open in App
Solution

512+512+log5(sinx)=1512+log15cosx

512(1+5log5(sinx))=1512.15log15cosx

512(1+sinx)=512.312.cosx

1+sinx=312.cosx

1+sinxcosx=3

sin2x2+cos2x2+2sinx2cosx2cos2x2sin2x2=3

(sinx2+cosx2)2(cosx2+sinx2)(cosx2sinx2)=3

(sinx2+cosx2)(cosx2sinx2)=3

Dividing both sides by cosx2 we get

sinx2cosx2+11sinx2cosx2=3

tanx2+tanπ41tanπ4tanx2=3

tan(x2+π4)=tanπ3

x2+π4=nπ+π3

x2=nπ+π3π4

x2=nπ+4π3π12

x2=nπ+π12

x=2nπ+π6


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon