wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation :
6 x425x3+12x2+25 x+6=0

Open in App
Solution

Solution:-
6x425x3+12x2+25x+6=0
6x4+12x2+625x3+25x=0
6(x4+2x2+1)25x(x21)=0
6(x2+1)225x(x21)=0
6((x21)2+4x2)25x(x21)=0
Let x21=t
Therefore,
6(t2+4x2))25tx=0
6t2+24x225tx=0
24x225tx+6t2=0
24x29tx16tx+6t2=0
3x(8x3t)2t(8x3t)=0
(8x3t)(3x2t)=0
8x3t=0 or 3x2t=0
Substituting the value of t, we have
8x3(x21)=0 or 3x2(x21)=0
8x3x2+3=0 or 3x2x2+2=0
3x28x3=0 or 2x23x2=0
Now,
  • 3x28x3=0
3x29x+x3=0
(3x+1)(x3)=0
x=13 or x=3
  • 2x23x2=0
2x24x+x2=0
(x2)(2x+1)=0
x=2 or x=12
Hence for the equation 6x425x3+12x2+25x+6=0, the values of x are 13,12,2 and 3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Expression formation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon