The determinant can be expressed as a sum of eight determinants
The terms containing x3 will be;-
∣∣
∣
∣∣a2xabxacxabxb2xbcxacxbcxc2x∣∣
∣
∣∣ or abcx3∣∣
∣∣aaabbbccc∣∣
∣∣
therefore co efficient of x3 will be 0
The terms containing x2 will be obtained from
∣∣
∣
∣∣u′abxacxw′b2xbcxv′bcxc2x∣∣
∣
∣∣+∣∣
∣
∣∣a2xw′acxabcvbcxacxu′c2c∣∣
∣
∣∣+∣∣
∣
∣∣a2xabxv′abxb2xu′acxbcxw∣∣
∣
∣∣
By taking bcx2 from first determinant second and third column becomes same
Hence, the co efficient of x2 is also zero
The co efficient of x
=a∣∣
∣
∣∣aw′v′bvu′cu′w∣∣
∣
∣∣+b∣∣
∣
∣∣uav′w′bu′v′cw∣∣
∣
∣∣+c∣∣
∣
∣∣uw′aw′vbv′u′c∣∣
∣
∣∣
=−∣∣
∣
∣
∣∣0abcauw′u′bw′vv′cv′u′w∣∣
∣
∣
∣∣
Lastly, the term independent of x is
∣∣
∣
∣∣uw′v′w′vu′v′u′w∣∣
∣
∣∣
x=∣∣
∣
∣∣uw′v′w′vu′v′u′w∣∣
∣
∣∣÷∣∣
∣
∣
∣∣uw′v′aw′vu′bv′u′wcabc0∣∣
∣
∣
∣∣