Solve the equation cos2[π4(sinx+√2cos2x)]−tan2(x+π4tan2x)=1
Given
cos2[π4(sinx+√2cos2x)]−tan2(x+π4tan2x)=1
or sin2{π4(sinx+√2cos2x)}+tan2(x+π4tan2x)=0
It is possible only when
sin2π4(sinx+√2cos2x)=0.....(1)
and tan2(x+π4tan2x)=0......(2)
from equation (1) sin2π4(sinx+√2cos2x)=0
∴π4(sinx+√2cos2x)=nπ,n∈1.
or, sinx+√2cos2x=4n
∴|sinx+√2cos2x|≤|sinx|+√|cosx|2
≤1+√2<4
∴ The equation has no solution for n≠0 we consider n=0
∴sinx+√2cos2x=0
i.e., √2sin2x−sinx−√2=0
or, (sinx−√2)(√2+1=0)
Θsinx≠√2 ∴sinx=−1√2
∴ The value of x satisfy the equation (2),
then general solution of given equation is
x=kπ+(−1)k+1π4,k∈1