Given : cos(tan−1x)=sin(cot−134)
Taking LHS,
LHS=cos(tan−1x)
LHS=cos(cos−11√x2+1)
[∵tan−1x=cos−11√x2+1]
LHS=1√x2+1
[∵cos(cos−1x)=x:x ϵ [−1,1]]
Taking RHS,
RHS=sin(cot−134)
RHS=sin(sin−145)
[∵cot−1xy=sin−1y√x2+y2]
RHS=45
[∵sin(sin−1x)=x:x ϵ [−1,1]]
As LHS=RHS,
⇒1√x2+1=45
⇒16+16x2=25 [Squaring both sides]
⇒x2=916
⇒x=± 34