Solve the equation cos(tan−1 x)=sin(cot−134).
We have cos(tan−1 x)=sin(cot−134)
⇒ cos(cos−11√x2+1)=sin(sin−145)(Let tan−1 x=θ1 ⇒ tan θ1=x1⇒ cos θ1=1√x2+1 ⇒ θ1=cos−11√x2+1and cot−134=θ2 cot θ2=34⇒ sin θ2=45 ⇒ θ2=sin−145⇒ 1√x2+1=45{∵ cos(cos−1 x)=x, x∈[−1, 1] and sin(sin−1x)=x, x∈[−1, 1]}
On squaring both sides, we get
16(x2+1)=25⇒ 16x2=9⇒ x2=(34)2∴ x=±34=−34,34