The correct option is A x=2nπ±π
√32sinx−cosx=cos2x
⇒34(1−cos2x)=(cos2x+cosx)2
⇒3(1−cos2x)−4cos2x(1+cosx)2=0
⇒(1+cosx)[3−3cosx−4cos2x−4cos3x]=0
⇒(1+cosx)[−4cos3x−4cos2x−3cosx+3]=0
⇒(1+cosx)(cosx−12)(4cos2x+6cosx+6)=0
⇒cosx=−1,cosx=12,4cos2x+6cosx+6=0
x=π;x=π3;5π3;D<0
But 5π3 does not satisfy the equation
∴x=2nπ+π3
or x=2nπ±π,n∈I