The correct options are
B x∈(3,5−√3)∪(5+√3,∞)
C x∈(3,5−√3)∪(7,∞)
loglog2(x/2)(x2−10x+22)>0
∴log(x2−10x+22)log(x2)log2 > 0
∴log(x2−10x+22)>0
But, if log(x2−10x+22)>0 then, the value of x2−10x+22 will have to be >0
Now this part we will see bit later but for now,
Lets solve, log(x2−10x+22)>0
Now because log1=0
∴x2−10x+22>1
∴x2−10x+21>0
∴(x−7)(x−3)>0
∴ eitherx>7 or x>3 i.e., Range of x is 3 to ∞ and 7 to ∞
Now, Lets solve for, x2−10x+22>0
∴x>5+√3 or x>5−√3
So, range of x is 5−√3 to ∞ & 5+√3 to ∞
Hence, x∈(3,5−√3)∪(7,∞)
And x∈(3,5−√3)∪(5+√3,∞)