Solve the equation for x,y,z and t if 2[xzyt]+3[1−102]=3[3546]
Open in App
Solution
2[xzyt]+3[1−102]=3[3546] ⇒[2x2z2y2t]+[3−306]=[9151218] ⇒[2x+32z−32y2t+6]=[9151218] Comparing the corresponding elements of these two matrices, we get: 2x+3=9⇒2x=6⇒x=3 2y=12⇒y=6 2z−3=15⇒2z=18⇒z=9 2t+6=18⇒2t=12t=6 ∴x=3,y=6,z=9 and t=6