(1+i)x−2i3+i+(2−3i)y+i3−i=i
⇒(3−i)(1+i)x−2i(3−i)+(3+i)(2−3i)y+i(3+i)9−i2=i⇒(3+2i−i2)x−6i+2i2+(6−7i−3i2)y+3i+i210=i⇒(4+2i)x−3i−3+(9−7i)y=10i⇒(4+2i)x+(9−7i)y=13i+3⇒(2x−7y)i+4x+9y=13i+3⇒2x−7y=13and4x+9y=3 [Equating the real parts and imaginary parts]
Solving them simultaneously, we get x =3, y =-1