⇒1√2sinx+1√2cosx=1√2
⇒sinπ4sin+cosπ4cosx=1√2
⇒cos(x−π4)=1√2
[∵cos(A−B)=cosAcosB+sinAsinB]
⇒cos(x−π4)=cosπ4
We know the general solution of cosx=cosα is x=2π±α,n∈Z
So,
(x−π4)=2nπ±π4
On taking positive sign, we get
⇒(x−π4)=2nπ+π4
⇒x=2nπ+π2=(4n+1)π2
On taking negative sign, we get
⇒(x−π4)=2nπ−π4
⇒x=2nπ
Hence, the general is
x=(4n+1)π2 and x=2nπ,n∈Z