Question
Solve the equation in each of the following.
(i) log4(x+4)+log48=2
(ii) log6(x+4)−log6(x−1)=1
(iii) log2x+log4x+log8x=116
(iv) log4(8log2x)=2
(v) log105+log10(5x+1)=log10(x+5)+1
(vi) 4log2x−log25=log2125
(vii) log325+log3x=3log35
(viii) log3(√5x−2)−12=log3(√x+4)