∫x4√1−x2dx
Let x=sinu then dx=cosudu
=∫sin4u√1−sin2ucosudu
=∫sin4u√cos2ucosudu
=∫sin4ucos2udu
Applying the integral reduction formula,
∫sinnxcos2xdx=−sinn−1xcos3xn+2+n−1n+2∫sinn−2xcos2xdx
=−sin3ucos3u6+36∫sin2ucos2udu
=−sin3ucos3u6+12∫1−cos4u8du
=−sin3ucos3u6+12(∫18du−∫cos4u8du)
=−sin3ucos3u6+116(u−14sin4u)
=−sin3(sin−1x)cos3(sin−1x)6+116((sin−1x)−14sin4(sin−1x))+c
'