⇒(sin6x+sin2x)−sin4x=0
Using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin(6x+2x2)cos(6x−2x2)−sin4x=0
⇒2sin4xcos2x−sin4x=0
⇒sin4x(2cos2x−1)=0
⇒sin4x=0 or (2cos2x−1)=0
⇒4x=nπ or cos2x=12
⇒x=nπ4 or cos2x=cosπ3
We know the general solution of cosx=cosα is x=2nπ±α,m∈Z
So, the general solution of cos2x=cosπ3 is
2x=2mπ±π3⇒x=mπ±π6
Hence, the general solution is
x=nπ4 and x=mπ±π6,n,m∈Z