Given equation
(x)2=[x]2+2x
Case I: If x∈I
then (x)=[x]
(x)2=[x]2+2x
⇒(x)2=[x]2+2x
∴x=0
Case II: If x∉I
then (x)=[x]+1
∵(x)2=[x]2+2x
⇒[x]2+1+2[x]=[x]2+2x
∴x=[x]+12=n+12,nϵI
Hence the solution of the original equation is x=0,n+12,nϵI
So, the only integral solution is 1