wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation log3/4log8(x2+7)+log1/2log1/4(x2+7)1=2 and find the value of x

Open in App
Solution

log3/4log8(x2+7)+log1/2log1/4(x2+7)1=2
log2log23(x2+7)log23/4log2log22(x2+7)1=2

log2(13log2(x2+7))log23/4log2(12log2(x2+7))=log2log2(x2+7)log23log23/4log2log2(x2+7)+1=2

Let log2log2(x2+7)=y
y(1log23/41)=log23log23/43=log3/4(3×(4/3)3)

y(log3/42×(4/3))=y(log3/48/3)=log3/4(8/3)2

y=2log2log2(x2+7)=2
log2(x2+7)=4(x2+7)=24
x2=9x=±3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon