Given equation
logx2+6x+8log2x2+2x+3(x2−2x)=0
⇒log2x2+2x+3(x2−2x)=(x2+6x+8)0
⇒log2x2+2x+3(x2−2x)=1
⇒x2−2x=(2x2+2x+3)1
⇒x2+4x+3=0
∴x=−1,−3
From the given equation , it follows that
x2+6x+8>0 , 2x2+2x+3>0 and x2−2x>0
⇒(x+4)(x+2)>0 , (x+12)2+54>0 and x(x−2)>0
⇒x∈(−∞,−4)∪(−2,∞) ......(1)
x∈(−∞,0)∪(2,∞)..............(2)
But x=−3 does satisfies (1) and (2)
∴x=−3 is not solution of the given equation.
But x=-1 satisfied both conditions (1) and (2)
∴x=−1 is only solution of the given equation.
Square of the solution is (−1)2=1