1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Equations
Solve the equ...
Question
Solve the equation:-
l
i
m
n
→
20
∫
n
−
1
r
=
0
n
n
1
+
r
2
Open in App
Solution
lim
n
→
20
∫
r
=
0
n
−
1
n
n
+
r
2
⇒
lim
n
→
20
∫
r
=
0
n
−
1
1
1
+
(
r
/
√
n
)
2
r
/
√
n
=
t
1
√
n
×
d
r
=
d
t
⇒
√
n
lim
n
→
∫
n
−
1
0
1
1
+
t
2
⇒
√
n
lim
n
→
20
[
tan
−
1
t
]
n
−
1
√
n
0
⇒
√
n
lim
n
→
20
[
tan
−
1
n
−
1
√
n
−
0
]
⇒
√
2
0
tan
−
1
19
√
2
0
Suggest Corrections
0
Similar questions
Q.
L
t
n
→
∞
n
−
1
∑
r
=
0
n
n
2
+
r
2
Q.
Let
T
n
=
n
∑
r
=
1
n
r
2
−
2
r
.
n
+
2
n
2
,
S
n
=
n
−
1
∑
r
=
0
n
r
2
−
2
r
.
n
+
2
n
2
, then
Q.
Evaluate:
lim
n
→
∞
n
−
1
∑
r
=
0
1
n
+
r
Q.
n
−
1
∑
n
=
0
n
+
1
n
+
1
=
?
Q.
The value of
n
∑
r
=
0
(
−
1
)
r
n
C
r
r
+
2
is equal to .