wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation tan1[1x1+x]=12tan1x,(x>0)

Open in App
Solution

We have,
tan1[1x1+x]=12tan1x2tan11x1+x=tan1x(i)

We know that,
2tan1x=tan1(2x1x2)2tan1(1x1+x)=tan1⎢ ⎢ ⎢ ⎢ ⎢2(1x1+x)1(1x1+x)2⎥ ⎥ ⎥ ⎥ ⎥=tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢2(1x1+x)(1+x)2(1x)2(1+x)2⎥ ⎥ ⎥ ⎥ ⎥ ⎥=tan1[2(1x)(1+x)(1+x)2(1x)2]using(a+b)(ab)=a2b2=tan1[2(1x2)(1+x+1x)(1+x1+x)]=tan1[2(1x2)4x]=tan1[1x22x]2tan1(1x1+x)=tan1[1x22x]fromequation(i)2tan1(1x1+x)=tan1xtan1(1x22x)=tan1x1x22x=11x2=2x21x22x2=013x2=03x2=03x2=1x=±13

x=13 is not possible because x>0

Taken only x=13

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon