1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Solve the equ...
Question
Solve the equation
tan
−
1
√
x
2
+
x
+
sin
−
1
√
x
2
+
x
+
1
=
π
2
Open in App
Solution
tan
−
1
√
x
2
+
x
+
sin
−
1
√
x
2
+
x
+
1
=
π
2
tan
−
1
√
x
2
+
x
=
π
2
−
sin
−
1
√
x
2
+
x
+
1
tan
−
1
√
x
2
+
x
=
cos
−
1
√
x
2
+
x
+
1
Apply
tan
−
1
y
=
cos
−
1
1
√
1
+
y
2
on R.H.S.
cos
−
1
1
√
1
+
(
√
x
2
+
x
)
2
=
cos
−
1
√
x
2
+
x
+
1
cos
−
1
1
√
x
2
+
x
+
1
=
cos
−
1
√
x
2
+
x
+
1
⇒
1
√
x
2
+
x
+
1
=
√
x
2
+
x
+
1
x
2
+
x
+
1
=
1
x
2
+
x
=
0
x
(
x
+
1
)
=
0
x
=
0
,
−
1
Suggest Corrections
0
Similar questions
Q.
Solve the equation:
cos
−
1
(
x
2
−
1
x
2
+
1
)
+
sin
−
1
(
2
x
x
2
+
1
)
+
tan
−
1
(
2
x
x
2
−
1
)
=
2
π
3
Q.
If
f
(
x
)
=
tan
−
1
(
1
−
√
x
2
−
1
√
x
2
+
2
√
x
2
−
1
)
+
sin
−
1
(
√
x
2
−
1
|
x
|
)
for
|
x
|
≥
1
,
then the number of solution(s) of the equation
tan
(
f
(
x
)
)
=
|
x
2
−
2
|
is
Q.
If
sin
−
1
√
1
+
x
+
x
2
+
tan
−
1
√
x
+
x
2
=
π
2
t
h
e
n
x
=
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
3
s
i
n
−
1
2
x
1
+
x
2
−
4
c
o
s
−
1
1
−
x
2
1
+
x
2
+
2
t
a
n
−
1
2
x
1
−
x
2
=
π
3
(b)
s
i
n
[
(
1
/
5
)
c
o
s
−
1
x
]
=
1
(c)
t
a
n
−
1
√
x
2
+
x
+
s
i
n
−
1
√
x
2
+
x
+
1
=
π
2
Q.
Solve
is equal to
(A)
(
B)
(
C)
(
D)