wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation tan x+tan 2x+3 tan x tan 2x=3.
Or
Prove that sin18=514.

Open in App
Solution

Given, tan x+tan 2x+3 tan x tan 2x=3

tan x+tan 2x=33 tan x tan 2x

tan x+tan 2x=3(1tan x.tan 2x)

tan x+tan 2x1tan x tan 2x=3

tan 3x=3tan 3x=tan π3 [tan(A+B)=tan A+tan B1tan A.tan B]

3x=nπ+π3, nϵZx=nπ3+π9, nϵZ

Or

Let θ=18, then

5θ=18×5=903θ+2θ=90

2θ=903θsin 2θ=sin(903θ)

sin 2θ=cos 3θ2 sinθ cosθ=4 cos2θ3 cosθ [cos 3θ=4cos2θ3 cosθ]

2 sinθ=4 cos2θ32 sinθ=44 sin2θ3

4 sin2θ+2 sin θ1=0sinθ=2±4+168=1±54

sinθ=514 [θ lies in 1st quadrant sin θ>0]

Hence, sin 18=514

Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon