Given, tan x+tan 2x+√3 tan x tan 2x=√3
⇒tan x+tan 2x=√3−√3 tan x tan 2x
tan x+tan 2x=√3(1−tan x.tan 2x)
⇒tan x+tan 2x1−tan x tan 2x=√3
⇒tan 3x=√3⇒tan 3x=tan π3 [∵tan(A+B)=tan A+tan B1−tan A.tan B]
⇒3x=nπ+π3, nϵZ⇒x=nπ3+π9, nϵZ
Or
Let θ=18∘, then
5θ=18∘×5=90∘⇒3θ+2θ=90∘
⇒2θ=90∘−3θ⇒sin 2θ=sin(90∘−3θ)
⇒sin 2θ=cos 3θ⇒2 sinθ cosθ=4 cos2θ−3 cosθ [∵cos 3θ=4cos2θ−3 cosθ]
⇒2 sinθ=4 cos2θ−3⇒2 sinθ=4−4 sin2θ−3
⇒4 sin2θ+2 sin θ−1=0⇒sinθ=−2±√4+168=−1±√54
⇒sinθ=√5−14 [∵θ lies in 1st quadrant ⇒sin θ>0]
Hence, sin 18∘=√5−14
Hence proved.