⇒(sin3x+sinx)+sin2x=0
Using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin(3x+x2)cos(3x−x2)+sin2x=0
⇒2sin2xcosx+sin2x=0
⇒sin2x(2cosx+1)=0
⇒sin2x=0 or (2cosx+1)=0
⇒2x=nπ or cos=−12
⇒x=nπ2 or cosx=cos2π3
We know the general solution of cosx=cosα is x=2mπ±α,m∈Z
So, the general solution of cosx=cos2π3 is
x=2mπ±2π3
Hence, the general solution is
x=nπ2 and x=2mπ±2π3,n,m∈Z