sinx+sin2x+sin3x+sin4x=0
⇒(sin3x+sinx)+(sin4x+sin2x)=0
Using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin(3x+x2)cos(3x−x2)+2sin(4x+2x2)cos(4x−2x2)=0
⇒2sin2xcosx+2sin3xcosx=0
⇒cosx(sin2x+sin3x)=0
⇒cosx[2sin(3x+2x2)cos(3x−2x2)]=0
⇒cosx[sin(5x2)cos(x2)]=0
⇒cosxsin(5x2)cos(x2)=0
⇒cosx=0 or sin(5x2)=0 or cos(x2)=0
⇒x=(2n+1)π2 or 5x2=mπ or x2=(2p+1)π2
Hence, the general solution is
x=(2n+1)π3 or x=2mπ5 or x=(2p+1)π Where,n,m,p∈Z