wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation
(vii) sinx+sin2x+sin3x+sin4x=0

Open in App
Solution

sinx+sin2x+sin3x+sin4x=0

(sin3x+sinx)+(sin4x+sin2x)=0

Using sinC+sinD=2sin(C+D2)cos(CD2)

2sin(3x+x2)cos(3xx2)+2sin(4x+2x2)cos(4x2x2)=0

2sin2xcosx+2sin3xcosx=0

cosx(sin2x+sin3x)=0

cosx[2sin(3x+2x2)cos(3x2x2)]=0

cosx[sin(5x2)cos(x2)]=0

cosxsin(5x2)cos(x2)=0

cosx=0 or sin(5x2)=0 or cos(x2)=0

x=(2n+1)π2 or 5x2=mπ or x2=(2p+1)π2

Hence, the general solution is
x=(2n+1)π3 or x=2mπ5 or x=(2p+1)π Where,n,m,pZ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon