⇒sin3x−sinx=2(2cos2x−1)
⇒sin3x−sinx=2cos2x
[∵1+cos2θ=2cos2θ]
Using sinC−sinD=2cos(C+D2)sin(C−D2)
⇒2cos(3x+x2)sin(3x−x2)=2cos2x
⇒2cos2xsinx−2cos2x=0
⇒cos2x(sinx−1)=0
⇒cos2x=0 or (sinx−1)=0
⇒2x=(2n+1)π2 or sinx=1
⇒x=(2n+1)π4 or sinx=sinπ2
We know the general solution of sinx=sinα is x=mπ+(−1)mα,m∈Z
So, the general solution of sinx=sinπ2 is x=mπ+(−1)mπ2,m∈Z
Hence, general solution is
x=(2n+1)π4 and x=mπ+(−1)mπ2,n,m∈Z