wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation
(viii) sin3xsinx=4cos2x2

Open in App
Solution

sin3xsinx=4cos2x2

sin3xsinx=2(2cos2x1)

sin3xsinx=2cos2x

[1+cos2θ=2cos2θ]

Using sinCsinD=2cos(C+D2)sin(CD2)

2cos(3x+x2)sin(3xx2)=2cos2x

2cos2xsinx2cos2x=0

cos2x(sinx1)=0

cos2x=0 or (sinx1)=0

2x=(2n+1)π2 or sinx=1

x=(2n+1)π4 or sinx=sinπ2

We know the general solution of sinx=sinα is x=mπ+(1)mα,mZ

So, the general solution of sinx=sinπ2 is x=mπ+(1)mπ2,mZ

Hence, general solution is
x=(2n+1)π4 and x=mπ+(1)mπ2,n,mZ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon