sinxtanx−1=tanx−sinx
⇒sinxtanx+sinx−1−tanx=0
⇒sinx(tanx+1)−1(1+tanx)=0
⇒(sinx−1)(tanx+1)=0
⇒(sinx−1)=0 or (tanx+1)=0
⇒sinx=1 or tanx=−1
⇒sinx=sinπ2 or tanx=tan3π4
We know the general solution of sinx=sinα is x=nπ+(−1)nα,n∈Z
We know the general solution of tanx=tanα is x=mπ+α,m∈Z
Hence, the general solution of the given eqution is
x=nπ+(−1)nπ2 and x=mπ+3π4,n,m∈Z