wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation
(viii) sinxtanx1=tanxsinx

Open in App
Solution

sinxtanx1=tanxsinx

sinxtanx+sinx1tanx=0

sinx(tanx+1)1(1+tanx)=0

(sinx1)(tanx+1)=0

(sinx1)=0 or (tanx+1)=0

sinx=1 or tanx=1

sinx=sinπ2 or tanx=tan3π4

We know the general solution of sinx=sinα is x=nπ+(1)nα,nZ

We know the general solution of tanx=tanα is x=mπ+α,mZ

Hence, the general solution of the given eqution is
x=nπ+(1)nπ2 and x=mπ+3π4,n,mZ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon