wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation (x+1)+(x+4)+(x+7)+....+(x+28)=155.

Open in App
Solution

Consider 1,4,7,...,28 are in A.P

First term=a=1

Common difference=a2a1=41=3

nth term=an=28

a+(n1)d=28

1+(n1)3=28

3(n1)=281=27

n1=273=9

n=9+1=10

Sum of n terms=Sn=n2(a+an)

Here a=1, n=10

S10=102(1+28)=5×29=145 ......(1)

Now, (x+1)+(x+4)+(x+7)+...+(x+28)=155

[(x+x+x+...+10terms)+(1+4+7+...+28)]=155

10x+145=155

10x=155145=20

x=1010=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon