wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equation:
(x2+3xy+y2)dxx2dy=0, given that y=0 and x=1.

Open in App
Solution

(x2+3xy+y2)dxx2dy=0
(x2+3xy+y2)x2=dydx
1+3(yx)+(yx)2=dydx
let yx=t(1)
y = xt
diff. w.r.t x
dydx=t+xdtdx
(i)1+3(t)+(t)2=t+xdtdx
t2+2t+1=xdtdx
dxx=dt(t+1)2
integrating both sides
dxx=dt(t+1)2
ln|x|=1(t+1)+c
ln|x|=1(yx+1)+c
ln|x|=xx+y+c
at x = 1, y = 0
lnl=11+0+c
0=1+cc=1
ln|x|=xx+y+1

1192990_1298706_ans_743b3ccdd54e4c0fb2935fd43ee3e4db.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon