Step 1: Given, –x2+x–2=0
Step 2: Check nature of roots
D=b2−4ac, a=–1,b=1,c=–2
⇒D=1−8=–7<0
∴D is negative
∴ Roots are imaginary, so we can use the quadratic formula .
Step 3:Using quadratic formula
x=−b±√b2−4ac2a
By putting the values of a,b,c
x=−1±(√1−4(−1)(−2)−2=−1±√−7−2=−1±√7i−2 (∵√−1=i).
The values of x are −1+√7i−2, −1−√7i−2