Solve the equation x4−4x2+8x+35=0, if one of its roots is 2+√3i
Open in App
Solution
Since 2+√3 is a root, 2−i√3 is also root sum of the roots =2+i√3+2−i√3=4 Product of the roots =(2+i√3)(2−i√3) =22−i2(√3)2=4+3=7 ∴ The corresponding factor is x2−4x+7. ∴x4−4x2+8x+35=(x2−4x+7)(x2+ρx+5) Equating x-terms, we get 8=7ρ−20⇒8+20=7ρ ⇒28=7ρ
⇒ρ=28720=4 ∴ Other factor is x2+4x+5 x2+4x+5=0
⇒x=−b±√b2−4ac2a ....[a=1,b=4,c=5] ⇒x=−4±√16−4(1)(5)2(1) ⇒x=−4±√−42=−4±2i2 ⇒x=+2(−2±i)2 ⇒x=−2±i Thus, the roots are 2±i√3, and −2±i.