Given equation is defined when
x+1≠0 Let x(3−xx+1)=u and x+3−xx+1=v
∴ the given equation is uv=2 ..... (1)
Now, u+v=x(3−xx+1)+x+(3−xx+1)
=(x+1)(3−xx+1)+x
=3−x+x=3
∴u+v=3 .....(2)
Substituting the value of u from (2) in (1),
(3−v)v=2
⇒v2−3v+2=0
⇒(v−1)(v−2)=0
⇒v=1 or v=2
So, u=2,v=1 or u=1,v=2
Given equation is equivalent to the collection
∴⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x(3−xx+1)=2x+3−xx+1=1 or ⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x(3−xx+1)=1x+3−xx+1=2
⇒{x2−x+2=0x2−x+2=0 or {x2−2x+1=0x2−2x+1=0
⇒{x2−x+2=0x2−2x+1=0
⇒⎧⎪⎨⎪⎩(x−12)2+74=0(x−1)2=0
But (x−12)2+74≠0
∴(x−1)2=0
⇒x=1 is a unique solution of the original equation.