Given: [y]3+2[y]2=[y]+2
⇒[y]3+2[y]2−[y]−2=0
Let [y]=t
⇒t3+2t2−t−2=0
⇒t3−t2+3t2−3t+2t−2=0...(b)
⇒t2(t−1)+3t(t−1)+2(t−1)=0....(a)
⇒(t−1)(t2+3t+2)=0
⇒(t−1)(t2+2t+t+2)=0
⇒(t−1){t(t+2)+1(t+2)}=0
⇒(t−1)(t+2)(t+1)=0
Either t=1,t=−2 or t=−1
For t=1,
[y]=1
Apply [y]≤y<[y]+1
∴1≤y<1+1
⇒1≤y<2
⇒y∈[1,2)
For t=−1,
[y]=−1
∴−1≤y<−1+1
⇒−1≤y<0
⇒y∈[−1,0)
For t=−2,
[y]=−2
∴−2≤y<−2+1
⇒−2≤y<−1
⇒y∈[−2,−1)
Hence, y∈[−2,−1)∪[−1,0)∪[1,2)
⇒y∈[−2,0)∪[1,2)
⇒y∈[−2,2)−[0,1)