Solve the equation, z2=¯z, where z is a complex number.
Let z=x+iy. Then,
z2=¯z⇒(x+iy)2=x−iy
⇒(x2−y2)+2ixy=x−iy. ...(i)
Equating real parts and imaginary parts on both sides of (i) separately, we get
x2−y2=x ...(ii) and 2xy=−y ...(iii)
From (iii), we get
2xy+y=0⇒y(2x+1)=0⇒y=0 or x=−12.
Case I When y=0
Putting y=0 in (ii), we get
x2−x=0⇒x(x−1)=0⇒x=0 or x=1.
∴(x=0, y=0) or (x=1, y=0)
Thus, z=(0+i0)~or~z=(1+i0)
Case II When x=−12
Putting x+−12 in (ii), we get
(−12)2−y2=(−12)⇒y2=(14+12)=34⇒y=±√32.
∴(x=−12, y=√32)or(x=−12, y=−√32).
Thus, z=(−12+√32i) or z=(−12−√32i).
Hence, z=0, 1, (−12+√32i) and (−12−√32i) are the required roots of the given equation.