Solve the equation z+√2|z+1|+i=0 for complex value of z.
Let the required complex number be z=x+iy. Then,
z+√2|z+1|+i=0
⇒(x+iy)+√2|(x+iy)+1|+i=0
⇒x+√2[√(x+1)2+y2]+(y+1)i=0
⇒x+√2[√(x+1)2+y2]=0 and y+1=0 [equating real parts and imaginary parts separately on both sides]
⇒y=−1 and √2[√(x+1)2+(−1)2]=(−x)
⇒y=−1 and √2.√x2+2x+2=(−x)
⇒y=−1 and 2(x2+2x+2)=x2
⇒y=−1 and x2+4x+4=0⇒(x+2)2=0 and y=-1
⇒x+2=0 and y=−1⇒x=−2 and y=−1.
Hence, the required complex number is z=(-2-i).