Given equation, 27x4−195x3+494x2−520x+192=0 and let the roots be a,b,c,d
The roots are in Geometric Progression, therefore
ba=cb=dc⟹ad=bc
We know that abcd=19227⟹ad=bc=83
(x−a)(x−d)=x2−(a+d)x+ad=x2–Ax+83, where A=a+d
(x−b)(x−c)=x2−(b+c)x+bc=x2–Bx+83, where B=b+c
x4−659x3+49427x2−52027x+649=(x−a)(x−b)(x−c)(x−d)
=(x2–Ax+83)(x2–Bx+83)….............…(1)
=x4–(A+B)x3+(AB+163)x2−(83)(A+B)x+649
Comparing the coefficients of x and x2, we have
A+B=52027⋅38=−659 and AB=−49427−163=35027
Eliminating B in the above equations, we have
27A2+195A+350=0
⟹(3A+10)(9A+35)=0⟹A=−359andB=−103
Substituting value of A and B in (1), we have
(x2+359x+83)(x2+103x+83)=0
⟹(9x2+35x+24)(3x2+10x+8)=0
⟹(x+3)(9x+8)(3x+4)(x+2)=0
∴ roots of the given equation are: −3,−2,−43,−89