2x3−x2−22x−24=0
Let the roots of the equation be 3a,4a,b
∑x=3a+4a+b=−−12=12⇒b=12−7a....(i)∑xy=3a(4a)+4a(b)+b(3a)=−2227a2+7ab=−11
Substituitng b from (i)
7a2+7a(12−7a)=−1174a2−7a−22=074a2+37a−44a−22=0⇒a=−12,2237
Substituting a in (i)
⇒b=4,−4037
∑xyz=3a(4a)b=−−242⇒a2b=1
The product of roots do not satisfy a=2237
So the roots of the equation are −32,−2,4