We have 2x4+x3−6x2+x+2=0
Dividing by x2, we get
2x2+x−6+1x+2x2=0⟹2(x2+1x2)+(x+1x)−6=0
⟹2(x+1x)2+(x+1x)−10=0
Substituting (x+1x)=y in the above equation, we get
2y2+y−10=0⟹(2y+5)(y−2)=0⟹y=2,−52
For y=2,x+1x=2⟹x2−2x+1=0⟹(x−1)2=0⟹x=1,1
For y=−52,x+1x=−52⟹2x2+5x+2=0⟹(x+2)(2x+1)=0⟹x=−2,−12
∴ the roots of the equation are 1,1,−2,−12