Consider the given equation.
3(sec2θ+tan2θ)=5
sec2θ+tan2θ=53
We know that
sec2θ=1+tan2θ
Therefore,
1+tan2θ+tan2θ=53
2tan2θ=53−1
2tan2θ=23
tan2θ=13
tanθ=1√3
tanθ=tanπ6
θ=nπ+π6
Hence, this is the answer.
If x = 3 sec2θ - 1, y = tan2θ - 2 then x - 3y is equal to