3x3−26x2+52x−24=0
Let the roots be ar,a,ar
∑xyz=ar(a)(ar)=−−243=8⇒a3=8⇒a=2∑x=ar+a+ar=−−263a(1+r+r2r)=2632(1+r+r2r)=263⇒3+3r+3r2=13r⇒3r2−10r+3=0⇒3r2−9r−r+3=0⇒3r(r−3)−1(r−3)=0r=3,13
So the roots of the equation are 23,2,6